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210008. People's Republic of China 
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Abstract. We investigate the magnetoplasmon polariton modes and the propagation of 
electromagnetic waves in a random-lhickness superlanice in a magnetic field. The layer 
thicknesses are distributed in accordance with a special probability function. ?be magnetic 
field is parallel CO the interfaces. and the propagation of the waves is perpendicular to the field. 
By use of the transfer-mtrix methad we show Lhat there exists a resonant optical transmission 
for waves with particular frequencies. We calculate the dispersion relation of the bulk modes, 
the resonant frequencies and the transmission coefficients The bansmission coefficients at the 
resonant frequencies are sensitive to variations in the magnetic held. Possible applications of 
such a slructure in new devices are discussed. 

1. Introduction 

Recently, the spectra of electrons and the optical properties of superlattices with randomly 
distributed layer thicknesses have been studied both theoretically and experimentally [I- 
41. Because the optical and transport properties of a superlattice depend on its tailored 
structure, i.e. on the compositions and the layer thicknesses, the artificially designed 
randomness in thicknesses provides new possibilities of applications in optical and electronic 
devices. As the random thicknesses violate Bloch symmetry in the growth direction, the 
fundamental miniband structure of a random superlattice is much more complicated than a 
periodic superlattice. This may lead to some unusual optical properties, for example optical 
absorption and luminescence. On the other hand, if the interfaces are smooth enough 
that the wave vector parallel to the laminations, I C ( ( ,  is preservative, the propagation along 
the growth direction of an elementary excitation with a given IC11 can be viewed as the 
corresponding motion in a one-dimensional (ID) disordered system. In accordance with 
scaling theory [5], most of the states of the excitation in such a ID system are localized, 
owing to the randomness. For several types of random I D  shuctures, however, it has 
been proved that there still exist completely unscattered states [6]. This feature can cause 
unusual resonant tunneling of electrons 171 or resonant transmission of acoustic waves in 
such random superlattices. 

Collective plasmon polaritons in superlattices with regular layer thicknesses have been 
investigated extensively [S-131. It is interesting to investigate the relationship between 
the behaviour of the excitations and the structure of the superlattices. Camley and Mills 
have demonstrated that in a semi-infinite superlattice the existence of a surface-plasmon 
mode depends on the ratio of the layer thicknesses [14]. Johnson and co-workers have 
found that surface-plasmon modes in a finite superlattice can be localized to the top and 
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bottom surfaces by slightly changing the dielectric constant of the gaps in the structure [IS]. 
From a calculated example presented by Johnson and Camley, the dispersion relation of 
plasmons in a finite superlattice (ten layers) seems to be not particularly sensitive to the 
fluctuation of thickness of a single layer [16]. We have calculated the properties of plasmon 
polaritons in a finite n-i-p-i superlattice with layer thicknesses randomly distributed in 
accordance with uniform probabilities and found that, in varying the degree of randomness, 
the frequencies of bulk modes only shift slightly, which is consistent with the m u l t  of [ I@, 
but the transmission coefficients are remarkably changed [171. 

Similar to the propagation of electrons and phonons, in special random superlattices there 
also exists resonant transmission for electromagnetic (EM) waves at distinctive frequencies. 
In this paper we introduce particular probabilities for the distribution of random layer 
thicknesses of a superlattice consisting of alternate deposition of conductive and insulating 
layers and determine the resonant frequencies at which the EM waves are completely 
unscattered by the randomness. We subject finite samples of such a structure to an external 
magnetic field parallel to the laminations, and suppose that the incident plane of the waves 
is perpendicular to the field. In varying the degree of randomness, the strength of the field, 
and the total number of layers, we calculate the dispersion relations of the magnetoplasmon 
polariton modes and the transmission coefficients of the EM waves. In the calculations 
we assume that the thicknesses are all large enough that every film can be characterized 
by a macroscopic dielectric function. The discontinuities at the interfaces are treated by 
the transfer-matrix method. We show that in a finite sample the variations of the degree 
of randomness and the magnetic field cause only a slight shift of the frequencies of the 
bulk modes, but large changes in the transmission characteristics. In particular. the resonant 
peaks are rapidly sharpened as the degree of randomness increases, and their frequencies are 
shifted when the magnetic field is changed. We also show that the transmission coefficient 
at a resonant frequency is rapidly damped if the magnetic field is slightly increased. All 
these characteristics provide the possibility of developing new electro-optical devices. 

The paper is organized as follows. In section 2 we describe the structure of the random 
superlattices investigated in this paper and the formalism of the transfermatrix method. In 
section 3 we calculate the dispersion relations of the magnetoplasmon polaritons and the 
resonant frequencies for the propagation of the EM waves. In section 4 we present the 
results of the calculated transmission coefficients as a function of frequency and magnetic 
field for finite samples with different total numbers of layers. Finally, we summarize the 
results in section 5. 
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2. Model and transfer-matrix formalism 

We consider a superlattice consisting of alternating layers of materials, which we label A 
and B. A is assumed to be an insulator, and B is assumed to be a material containing charge 
carriers. The total number of layers is finite. The random layered structure investigated in 
this paper can be viewed as that constructed by randomly inserting a number of identical 
units, each of which is an altemating array of m layers of material A with thickness L. and 
m layers of material B with thickness Lb, into a uniform slab of material A, with all of the 
interfaces parallel to the surfaces of the slab (see figure 1). We can use the following array 
of layers to describe the whole system: 

AlB,AzBz. ..AiB, ..ANBNAN+I (1) 



Finite random-thickness superlm’ce in a magnetic field 3433 

where A, (i = 1.2, . . . , N ,  N + 1) represent layers of species A with partially random 
thicknesses /U, and Bj (i = 1.2.. . . , N )  represent layers of species B with a regular 
thickness Lb.  The thicknesses 1, satisfy the following probability distribution: 

where S ( x )  is the usual S function, and 

with n = 0. 1,2 , .  . . . M and N = M m ,  

1-35 
4, 
La 
Lb 

‘a3 
Lb 

La 
Lb 

I81 

Figure 1. Structure of a superlattice with partially random 
layer thicknesses of species A and regular layer thicknesses of 
species B; m = 2 and I,!, la, 1 6 . .  . are randomly distributed. 

Such a structure is similar to the random multibarrier superlattice considered in [7], 
but now the ‘barrier’ is a conductive layer and the ‘well’ is an insulating layer. One 
‘multibarrier’ consists of m conductive layers separated by the insulating layers, and there 
are M ‘multibaniers’ in the whole system. We let the left surface of the superlattice lie in 
the x-z plane. A static magnetic field is applied along the z axis. In this paper we restrict 
ourselves to the magnetoplasmon polariton modes propagating in the x-y plane. 

We start with the general wave equation for the electric field ( E )  in terms of the 
macroscopic dielectric tensor 8 :  

v x (V x E -4; PE) = 0 (3) 

where 40 = o /e. w is the frequency of the wave and c is the velocity of light. Within an 
insulating layer, 8 reduces to a scalar: 

P = €,I (4) 

where i is a unit tensor. In a conductive film, we have the following expression for P: 



Here Eb is the background dielectric constant, wp is the plasma frequency, y is the relaxation 
time of carriers, and w, is the cyclotron frequency eBjm'c, with E and m* being the 
magnetic field strength and the effective mass of the charge carriers, respectively. For most 
conductors the damping rate of the carriers ( l / y )  is much smaller than the frequency of 
visible light. So we can assume l / y  to be zero if we are mainly interested in light with a 
frequency higher than l j y .  As the waves are propagating within the x-y plane, by assuming 
plane-wave solutions of E we obtain the wave equation appropriate to material A: 

qoZ€a - k& k x k p  0 
kxkya qica - k: 0 ) E = O  (9) 

k,k,b - iq& q&l - k: 0 ) E = O  (10) 

( 0  0 q& - k: - k;a 

and the equation for material B: 

0 2 
Qo61 - k:b krkyb + k7&2 

( 0  0 9,263 - k: - k$ 

where k ,  is the x component of the wave vector, and kya and kyb are its y components in 
materials A and B, respectively. Note that w and kz are preserved across the interfaces. 
The relationships among w ,  k y  and k, are determined by setting the determinants of the 
coefficient matrices in (9) and (10) to be zero, and the results are 

(1 1) k;& = caqo 2 - k: 

and 

z component of E (s polarization) 

x ,  y components of E (p polarization). 

2 2  k 2  = <3q0 - k ,  
k:b = [ 2 -  - 2 (12) 

k,, = (cl - ~ i ) q i / 6 1  - k: 

The x and y components of E are related by 

for material A (13) 
kz E Y = - - E z  
kya 
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The general form of the wave solutions in the ith layer of materials A and B can be 
expressed in terms of a superposition of waves with k, and -k,: 

E&, Y) = IA$)exp[ik,& - Y ~ I  + A$)exp[-*,(y - ~i~) l lexp( ik ,x)  (15) 

E&. Y) = IA$)exp[ik,& - yid1 + AI;'exp [-*,,(Y - yid11 exp ( ikx)  (16) 

for the ith layer of species A, and 

E A  Y) = IB$'exp[ikyz(y - Yid] + B$'exp[-ik,z(y - yidlIexp(ik,x) (17) 

(18) E,@,Y) = (B,':)exp[ik,l(y -yib)l +Bj:'exp[-ik,~(y -~ib)llexp(ik,x) 

for the ith layer of species B. Here yia (or Ab) is the coordinate of the interface between 
layer Ai (or Bi) and its preceding layer in (1). The standard EM boundary conditions at 
the interfaces between A and B layers are the continuity of the tangential electric- and 
magnetic-field components: Ex,  E,, B, and B,. We suppose that in the materials A and 
B the susceptibility p is unity, so the magnetic field B can be written in terms of E via 
Faraday's law: V x E = iqoB. For the present geometry, Ex and E, are decoupled from 
Er. so one has two independent boundary conditions for E, or EL at an interface. We 
express them in  a 2 x 2 matrix form: 

where w = x ,  z, and the 2 x 2 matrices are defined by 

for i  # n m f  1, (n = 0, 1 , 2 , .  ..,M) 

for i  = n m +  1, and 
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In these expressions we have used the fact that the thicknesses of layers of species A are 
partially random, and the thicknesses of all layers of species B are regular. The amplitudes 
in layers Ai and A,+I are related by 

Shi-Jie Xiong and Rong-Bo Ou-Yang 

with 

f o r i  # nm + 1, and 

for i = nm + 1. Thus the relationship between the Fields at the two ends of the whole 
system can be written as 

where 

From the definition, we can see that T:’. T?’, (i = I ,  2, . . . , N), and T(”) are all unimodular 
2 x 2 matrices. By using a theorem from matrix theory described in [ I@,  one has 

(32) 

where T = $Tr(Tt’), I is a unit matrix, and u,(T)  is the mth Chebyshev polynomial of the 
second kind, which obeys the recurrence relation 

[To (4 I m - - u,,-l(r)T;) - u ~ - ~ ( T ) I  

U,+I(T) = 2ru,(s) - um-i(r) m 2 0 (33) 

with U - ]  = 0 and K O  = 1. If 151 < 1, u , ( T )  has the form 

with ‘p = cos-I(r). 

polarized EM waves. 
We note that, for our geometry, the magnetic field only influences the modes of p- 
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3. Dispersion relation of the bulk modes and the unscattered modes 

From the equations derived in the last section we can calculate the dispersion relations 
for the modes of magnetoplasmon polaritons with different degrees of randomness and in 
different magnetic fields. The randomness in layer thicknesses breaks the periodicity in the 
growth direction; we have to restrict ourselves to a system containing only a finite number 
of layers. In this paper we are only interested in the bulk modes, i.e. we look for frequencies 
at which the solutions of the field do not grow exponentially. In a more restricted version, 
similar to the standard procedure employed in investigations of quasiperiodic systems [19j, 
we impose a Bloch ansatz on the amplitudes at the two ends of the finite system described 
by (1): 

where q is the Bloch index reflecting this periodic boundary condition, and 

is the distance between the first layer and the (2N + 1)th layer. From (30) we have 

The existence of non-trivial solutions for ‘4::; and A;:;, together with the fact that T‘”) is a 
unimodular 2 x 2 matrix, leads to 

x = iTr(T‘”)) = cos(qL) or 1x1 < 1. (37) 

The dispersion relations for s and p polarizations are calculated from this equation with 
U = z and U = x ,  respectively. The result is a set of minibands of frequencies which 
meet the condition in (37). Such a miniband structure comes from the imposed Bloch 
ansatz, and their widths are reduced to zero in the limit N --t CO. In the calculation of the 
dispersion relations, we employ a finite sample with N large enough that the widths of the 
minibands are of the same order as the frequency resolution in the figures. In the absence 
of a magnetic field, these two modes are degenerate. By applying the magnetic field, the s- 
polarized modes are unchanged, while the frequencies of the p-polarized modes are altered. 
In figures 2 and 3 we plot the dispersion relations for the s- and p-polarized modes in the 
absence of a magnetic field (also for the s-polarized modes in the presence of magnetic 
field) in two finite samples with m = 2 and m = 3, respectively. The results are presented 
here in terms of the reduced frequencies, o/wp, the reduced wave vector, ck,/o,, and the 
reduced layer thickness opl/c. The minibands are illustrated by the dots at several values 
of wave vector. It can be seen that the dots are gathered together to form several separated 
groups. As the sample with larger m has more regular layers, and so less randomness, in a 
comparison of figures 2 and 3 we can see that the change of the degree of randomness only 
slightly shifts the frequencies of the modes, which is consistent with the results of 1161, 
but the sample with more randomness exhibits more structure of the miniband groups. In 
figures 4 and 5 we plot the dispersion relations of the p-polarized modes in the presence of 
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Figurr 2. The dispersion relation of bulk plasmon 
polariton modes (represented by the dots) and the 
unseattered modes (represented by the full curves) of a 
random superlanice in the absence of a magnetic field. 
The parameters of the sample are: fa = f b  = 13.13. 
q L , j c  = 1.5, wpLbjc = 1.3. N = 20, m = 2. 
q d ,  / e  = 1.6. %d2 j c  = 4.6. The broken line is for 
w = ck,, and the full straight line is for o = ck,f-'/'. 

F i w  3. The dispersion relation of bulk plasmon 
polariton modes and the unscmered modes of a random 
superlanice in the absence of a magnetic field. The 
notations and lhe parameters are the Same as those in 
figure 1, except that m = 3. 

a magnetic field for the same samples as those in figures 2 and 3. The magnetic field is also 
expressed in reduced units of oc/op. It can be seen that by applying the magnetic field the 
miniband-group structure of the p-polarized modes becomes more complicated, particularly 
near the cyclotron frequency, owing to the resonant response of the cyclotrons. 

Although the bulk modes do not grow or get damped exponentially from the surfaces. 
most of the modes are scattered by the randomness and may be localized at some layers 
within the system. This is just the situation predicted by the scaling theory of a one- 
dimensional disordered system. In the present structure defined by (1) and (2), however, 
there exist some modes that are completely unscattered by the randomness. In fact. from 
(32) and (34) we can see that if m > 2 and the frequency of a mode satisfies 

r =cos ( j x / m )  j = 1,2,. . . , m - 1 (38) 

then 

pp]" = (-1)jl 

and 

(39) 

Since the product on the right-hand side of this equation is just the transfer mahix of a 
uniform slab of material A with thickness Cyi' Io .nm+l ,  the propagation of this mode in the 
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0.0 0.8 1.6 2.4 0.0 0.8 1.6 2.4 
REDUCED WAVE VECTOR KEDUCH) WAVE VECTOR 

Figure 4. The dispersion relm'on of bulk magnetoplas- 
mon polariton modes and the unscattered modes of a 
random superlattice in the presence of a magnetic field. 
The notarions and the parameters are the same as those 
in figw 1 and the magnetic field is oe fq = 0.7. 

Figure 5. The dispmion relation of bulk magnetoplas- 
mon polariton modes and the unscattered modes of a 
random superlattice in the presence of a magnetic field. 
The norarions and the pmmeters are ~e same as those 
in figure 2 and the magnetic field is -1% = 0.7. 

sample is similar to its propagation in a uniform medium of A, and is completely unscattered 
by the randomness. The dispersion relations of these unscattered modes are determined by 
(38) and are represented by the full curves in figures 2-5 for the corresponding samples. 
We can see that in the frequency region of o 2 d P k ,  (above the straight line kya = 0 in 
the figures), these modes are within the minibands of the bulk modes. Outside this region 
(beneath the straight line k,, = O), these modes are not located within the bulk minibands. 
This is because the propagation of the waves in this frequency region in a uniform medium 
of material A is exponentially damping, so they belong to the surface modes, although they 
are not scattered by the randomness. By comparing these figures, one can see that when 
m is changed from two to three, the curves for the unscattered modes are split into double 
curves, as can be expected from (38). The examples of the frequencies of the unscattered 
p-polarized modes as a function of magnetic field and layer thickness La are presented 
in figures 6 and 7, respectively. The dividing line for the bulk modes and the surface 
modes is shown by a chain curve. The frequencies of the unscattered bulk modes and 
surface mode both decrease as the magnetic field increases, because the cyclotrons reduce 
the dielectric functions €1 and €2 of the conduction layers, so a compensating decrease of the 
unscattered frequency is required for meeting condition (38). By increasing the thickness 
of the insulating layers L,, the frequencies of unscattered bulk modes are reduced but that 
of the surface mode is slightly increased. This is because the frequency dependences of 
the wavelength of a bulk mode and the damping length of a surface mode are opposite, so 
the compensating tendencies of their frequencies for meeting condition (38) in varying the 
layer thickness are also opposite. 
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r 0.2 

0.03 I I I . , . , . I 0.0 a 
0.0 0.5 1.0 1.5 0.0 1.0 2.0 3.0 4.0 
REDUCED K4GNETIC FIELD REDUCED THICKNESS 

Ftcure 6. The frqucncies of the unscanered modes 
as a function of the magnetic field. The panmeters 
of the sample a~ the s a c  as lhose of figure 2 and 
kxc/wp = 0.6. The broken line is for o = ck, and the 
chain line is foro = ck,r-’/ ’ .  

Figure 7. The frequencies of the unscattered modes as 
a function of the layer thickness L.. The parameters of 
the s m p l e  and the wave vector %e the Same as those of 
figure 5. except L,. The magnetic field is %/wp = 0.7, 
The broken line is for w = ck, and the chain line is for 
o = ck,r- ’ /2.  

4. High-quality resonant transmission 

Since the randomness reflects most of the bulk modes except the unscattered modes 
mentioned above, one may expect a high-quality resonant transmission of EM waves through 
such a structure. We consider a finite superlattice consisting of the first N layers of species 
A and N layers of species B and without the ( N  + 1)th layer in the series given by (l) ,  
and insert it into an infinite uniform medium of insulator C with dielectric constant cc. We 
assume that the incident EM wave of s- or p-polarization propagates from the left part of 
medium C towards the superlattice, with its wave vector in the x-y plane and an amplitude 
of unity. Part of the wave is reflected by the random superlattice. We denote the amplitudes 
of the reflected and transmitted wave by r (”)  and d”), respectively. Here U = x. z specifies 
the polarization of the wave. The field components in the two parts of medium C are related 
to those in the superlattice by the boundary conditions at the two interfaces: 

and 

where 

(1 + s ) / 2  (1 - s ) / 2  
(1 - s)/2 (1 + s)/2 

FI = ( 
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with 

By using (28). (30) and (31) we have 

(‘1) = Y(”) ( . ;”) )  (45) 

where 

Y(”) = [FI]-’T‘”’FI, 

By solving this equation for t(”), one obtains the transmission coefficient 

It(”)IZ = l/I[Y‘”)l,l~. (46) 

If the frequency of a mode meets the condition (38) and is higher than ce;’*k, and 
cc~’2k,, it  can transmit through the whole system, just like its transmission through a slab 
of species A embedded in a uniform medium C. If A and C are of the same material, the 
transmission coefficient for this mode is unity. When A and C are different. the transmission 
is determined by the phase coherence between the transmitted and reflected wave at the two 
ends of the superlattice, depending on the sum C:s’ 

zo.8 - 
0, 
0-2 
z0.6 - 
E rn 
2 0 . 4  - 
p: 
B 

0.2 - 

Figure 8. The transmission coefficient as a function 
of frequency in the absence of a magnetic field for the 
sample of parameters described in figure I ,  except that 
N =3;  k, = 0. 

Figure 9. The transmission Coefficient as a function 
of frequency in the absence of a magnetic field for the 
sample of parameters described in figure 1,  except that 
N = IO; kx =O. 
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The calculated examples for the transmission coefficients of samples with the same 
degree of randomness but with different numbers of layers in the absence of magnetic field 
are plotted in figures 8 and 9. We only display the curves in a small region near a resonant 
frequency; the transmissions outside this region are vanishingly small, except near the other 
resonant frequencies. It can be seen that the resonant transmissions are certainly narrow 
with respect to the frequency even if the total number of layers in the superlattice is small. 
As a comparison, in figure IO we plot the calculated result for a finite regular superlattice 
with a larger number of layers, where the transmission occurs over a much wider frequency 
region. The structure in the figures comes from the finiteness of the total number of layers 
of the samples, in which the band of an infinite superlattice reduces to discrete levels. The 
oscillation of the amplitudes of the peaks in figure 10 is due to the phase interference at the 
two ends of the superlattice, since we used different materials for A and C. The oscillation 
is not apparent for the random samples of figures 8 and 9 because the resonant region is 
much narrower in this case. The amplitude of the transmission, however, can be influenced 
by this phase interference. 

I 1.0 1 

REDUCED FREQUENCY 

Flgure 10. The transmission coefficient 3s a function of 
frequency in the absence of a magnelic field for a regular 
superlattice with N = 20 and 1, = L, fori = n m  t I .  The 
other parameters are the same as those in figure 7. 

It is also interesting to investigate the dependence on the magnetic field of the 
transmission coefficients of the p-polarized waves at the resonant frequencies. Some 
examples are presented in figures 11 and 12. The transmission coefficients are very sensitive 
to the field strength. As the magnetic field increases, the transmissions are rapidly damped. 
This is because the cyclotrons change the dielectric functions of the conduction layers and 
the phases of the waves reflected at the interfaces, so condition (38) for the unscattered 
waves is no longei satisfied. The structures in the curves are also due to the finiteness of 
the total number of layers. By comparing the two figures, we can see that with increasing 
total number of layers, the damping becomes more rapid and the peaks become denser. 

5. Summary 

We have investigated the dispersion relations and the transmission coefficients of the 
magnetoplasmon polariton modes in a specially constructed random superlattice. Our 
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6 
REDUCED MAGNETIC FIELD REDUCED MAGNETIC FIELD 

Figure 11. The transmission coefficient as a function of 
magnetic field for the sample of paramelers described 
in figure 1, except that N = 10; ek , /op  = 0.1661 and 
o/op = 0.81. 

Figure 12. The transmission coefficient as a function 
of magnetic field. The parameters are the same as those 
in figure 10, except hat N = 50. 

purpose was to calculate the frequencies of the bulk modes, in particular to discover those 
modes that are completely unscattered by the randomness and that have finite transmissions. 
We took the magnetic field to be parallel to the interfaces and the incident plane of the EM 
waves to be perpendicular to the field. In such a highly symmetric geometry the formalism 
was simplified and the features of the system became easier to see. 

We have shown that in a superlattice with partially random layer thicknesses of species 
A and regular layers of species B, a small portion of the bulk modes are unscattered 
in the random smcture, although most of the modes are localized as expected from the 
scaling theory. This leads to an interesting feature of the system: high-quality resonant 
transmission. The resonance is certainly narrow in the frequency and is sensitive to the 
magnetic field. There seems to be the possibility of developing new devices, such as 
optical filters, magnetic-field sensors or electro-optical switches, by using this feature. 

We have also found that there exists a mini-structure within the resonant region. It is 
caused by the finite number of layers of the superlattice. By increasing the number of layers, 
the peaks in the structure become denser. At the same time, the value of the transmission 
at the resonant frequency is influenced by the interference at the two ends of the finite 
superlattice. It may be interesting, in further investigations, to consider the effect of other 
physical factors, such as the damping of the carriers, on the detailed features of the resonant 
transmission. 
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